domingo, 25 de mayo de 2014

CASOS ESPECIALES

  CASOS ESPECIALES



CASO DE SOLUCIONES MÚLTIPLES
Cuando la función objetivo es paralela a una restricción que se satisface en el sentido de la igualdad a través de la solución óptima, la función objetivo tomará el mismo valor óptimo en más de un punto de la solución. Por esta razón reciben el nombre de Múltiples alternativas óptimas.


CASO DE SOLUCIÓN DEGENERADA
La degeneración ocurre cuando en alguna iteración del método simplex existe un empate en la selección de la variable que sale. Este empate se rompe arbitrariamente. En este caso decimos que la nueva solución es degenerada. Sin embargo, cuando suceda esto una o más veces de las variables básicas, será necesariamente igual a cero en la siguiente iteración. En el método simplex, la presencia de una variable básica igual a cero, no requiere ninguna acción especial; en todo caso, es necesario no descuidar las condiciones de degeneración. En términos geométricos, la degeneración ocurre cuando un vértice está definido por demasiadas restricciones.



CASO DE SOLUCIÓN INFACTIBLE
En un modelo de Programación Lineal, cuando las restricciones no se pueden satisfacer en forma simultánea, se dice que este no tiene solución factible. Esta situación nunca puede ocurrir si todas las restricciones son del tipo MENOR O IGUAL (<=), esto, suponiendo valores positivos en el segundo miembro, ya que las variables de holgura producen siempre una solución factible.

Sin embargo, cuando empleamos los otros tipos de restricciones, recurrimos al uso de variables artificiales, que por su mismo diseño no ofrecen una solución factible al modelo original. Aunque se hacen provisiones (a través del uso de penalizaciones) para hacer que estas variables artificiales sean cero en el nivel óptimo, esto sólo puede ocurrir si el modelo tiene una espacio factible. Si no lo tiene, cuando menos una variable artificial será positiva en la iteración óptima.

CASO DE NO SOLUCIÓN
En algunos modelos de Programación Lineal, los valores de las variables, se pueden aumentar en forma indefinida sin violar ninguna de las restricciones, lo que significa que el espacio es sin solución cuando menos en una dirección.
Como resultado, el valor de la función objetivo puede crecer (Maximización) o decrecer (Minimización) en forma indefinida. En este caso, decimos que el espacio en el cual se espera sea resuelto el modelo, y el valor óptimo de la función objetivo no tiene solución.

La falta de explicación de un modelo puede señalar solo una cosa, que este se encuentra mal construido. Evidentemente resulta irracional hacer que un modelo produzca una ganancia infinita. Las irregularidades más probables en este modelo son:

1. No se toman en cuenta una o más restricciones redundantes

2. No se determinan adecuadamente los parámetros (constantes) de alguna restricción.

No hay comentarios:

Publicar un comentario